BACKGROUND AND PURPOSE

Prostate cancer has nearly a 100% survival rate if diagnosed early.\(^1\) Though recognized worldwide as the standard prostate cancer screening test, PSA testing is tissue-specific, not cancer-specific, resulting in more chances of a false positive due to non-cancerous conditions such as prostate enlargement, prostatitis, or urinary tract disease—especially with "gray zone" results between 4-10 ng/mL.\(^2,\)\(^3,\)\(^4\)

The diagnostic confirmation of prostate cancer in patients with a PSA in the gray zone is controversial, often leading to unnecessary biopsy.\(^5\) Without consensus guidelines for prostate management in the gray zone, nearly 80% of prostate biopsies performed are negative for cancer,\(^6\) unnecessarily subjecting thousands of men to harmful side effects of overtreatment, including impotence and incontinence.

We developed a new circulating-tumor-cell (CTC) assay for detection of prostate cancer in patients in the PSA gray zone, with the goal to decrease the number of unnecessary prostate biopsies.

METHODS AND STUDY DESIGN

A prospective clinical study was conducted in 200 high-risk subjects. All subjects underwent routine prostate screening including PSA testing and digital rectal exam (DRE). 4 mL of blood was drawn and processed for CTC analysis using the CellMax biomimetic platform.\(^7\)

A subset of 84 subjects with PSA levels in the gray zone (4-10 ng/ml) and those diagnosed as ‘diseased’ based on PSA and DRE results also underwent a biopsy for comparison with blinded CTC test results. The CellMax CTC Prostate Test uses a proprietary microfluidic biochip that accurately captures and enumerates CTCs with antibodies to EpCAM, CK18, and PSMA.\(^8\) Multivariate regression models incorporating CTC Prostate Test results were utilized to derive age-adjusted CTC scores predictive of clinical outcomes.

RESULTS

84 subjects with PSA levels in the gray zone (4-10 ng/ml) were included in this study. Prostate biopsy results were available for a subset of 42 patients; 10 had confirmed cancer. A CTC score was calculated as a nonlinear weighted combination of the captured CTCs identified with CK18 and PSMA antibodies. After adjustment for age and PSA, the CTC score remained a significant predictor of clinical outcome in the PSA gray zone (likelihood ratio p-value = .013) whereas PSA was not significant.\(^9\) The sensitivity and specificity of the CTC score were 80.0% (95% CI: 44.4%, 97.5%) and 93.8% (95% CI: 79.2%, 99.2%). Negative agreement and Positive agreement were 93.8% (95% CI: 79.2%, 99.2%) and 80.0% (95% CI: 44.4%, 97.5%).\(^9\) Given the observed odds ratio for CTC score in the study, approximately 0.90 (95% CI 0.79, 0.98), the study is appropriately powered.

CONCLUSIONS

This study demonstrates the CTC Prostate Test as a valuable new biomarker in prostate cancer, and proves its clinical utility in the PSA gray zone by helping physicians stratify patients who do not need a prostate biopsy. The test has the potential to reduce unnecessary biopsies in gray zone patients by up to 90%. This is one of the first clinical studies to show the utility of CTCs for accurate prostate cancer detection in the PSA gray zone.

ACKNOWLEDGEMENTS

The authors wish to thank all patients who volunteered in this clinical study, and the support received from CGMH and CellMax and their dedicated nurses, staff, scientists and medical technicians.